3.339 \(\int \cot ^5(c+d x) (a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=342 \[ -\frac{\left (-240 a^2 A b^2+128 a^4 A-320 a^3 b B+40 a b^3 B-5 A b^4\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{64 a^{3/2} d}+\frac{\left (48 a^2 A-104 a b B-59 A b^2\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{96 d}+\frac{\left (144 a^2 A b+64 a^3 B-88 a b^2 B-5 A b^3\right ) \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{64 a d}+\frac{(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{a (8 a B+11 A b) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d} \]

[Out]

-((128*a^4*A - 240*a^2*A*b^2 - 5*A*b^4 - 320*a^3*b*B + 40*a*b^3*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/
(64*a^(3/2)*d) + ((a - I*b)^(5/2)*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d + ((a + I*b)^(5
/2)*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d + ((144*a^2*A*b - 5*A*b^3 + 64*a^3*B - 88*a*b
^2*B)*Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/(64*a*d) + ((48*a^2*A - 59*A*b^2 - 104*a*b*B)*Cot[c + d*x]^2*Sqrt
[a + b*Tan[c + d*x]])/(96*d) - (a*(11*A*b + 8*a*B)*Cot[c + d*x]^3*Sqrt[a + b*Tan[c + d*x]])/(24*d) - (a*A*Cot[
c + d*x]^4*(a + b*Tan[c + d*x])^(3/2))/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 1.66868, antiderivative size = 342, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 9, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {3605, 3645, 3649, 3653, 3539, 3537, 63, 208, 3634} \[ -\frac{\left (-240 a^2 A b^2+128 a^4 A-320 a^3 b B+40 a b^3 B-5 A b^4\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{64 a^{3/2} d}+\frac{\left (48 a^2 A-104 a b B-59 A b^2\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{96 d}+\frac{\left (144 a^2 A b+64 a^3 B-88 a b^2 B-5 A b^3\right ) \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{64 a d}+\frac{(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{a (8 a B+11 A b) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^5*(a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

-((128*a^4*A - 240*a^2*A*b^2 - 5*A*b^4 - 320*a^3*b*B + 40*a*b^3*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/
(64*a^(3/2)*d) + ((a - I*b)^(5/2)*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d + ((a + I*b)^(5
/2)*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d + ((144*a^2*A*b - 5*A*b^3 + 64*a^3*B - 88*a*b
^2*B)*Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/(64*a*d) + ((48*a^2*A - 59*A*b^2 - 104*a*b*B)*Cot[c + d*x]^2*Sqrt
[a + b*Tan[c + d*x]])/(96*d) - (a*(11*A*b + 8*a*B)*Cot[c + d*x]^3*Sqrt[a + b*Tan[c + d*x]])/(24*d) - (a*A*Cot[
c + d*x]^4*(a + b*Tan[c + d*x])^(3/2))/(4*d)

Rule 3605

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((b*c - a*d)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e
+ f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m -
 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a*A*d*(b*d*(m - 1) - a*c*(n + 1)) + (b*B*c - (A*b + a*B)*d)*(b*c*(m - 1)
 + a*d*(n + 1)) - d*((a*A - b*B)*(b*c - a*d) + (A*b + a*B)*(a*c + b*d))*(n + 1)*Tan[e + f*x] - b*(d*(A*b*c + a
*B*c - a*A*d)*(m + n) - b*B*(c^2*(m - 1) - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && LtQ[n, -1] && (Inte
gerQ[m] || IntegersQ[2*m, 2*n])

Rule 3645

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*d^2 + c*(c*C - B*d))*(a + b*T
an[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), I
nt[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*c
*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b*(d*(B*c - A*d)*(m + n + 1
) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \cot ^5(c+d x) (a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx &=-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d}+\frac{1}{4} \int \cot ^4(c+d x) \sqrt{a+b \tan (c+d x)} \left (\frac{1}{2} a (11 A b+8 a B)-4 \left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)-\frac{1}{2} b (5 a A-8 b B) \tan ^2(c+d x)\right ) \, dx\\ &=-\frac{a (11 A b+8 a B) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d}+\frac{1}{12} \int \frac{\cot ^3(c+d x) \left (-\frac{1}{4} a \left (48 a^2 A-59 A b^2-104 a b B\right )-12 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \tan (c+d x)-\frac{1}{4} b \left (85 a A b+40 a^2 B-48 b^2 B\right ) \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{\left (48 a^2 A-59 A b^2-104 a b B\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{96 d}-\frac{a (11 A b+8 a B) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d}-\frac{\int \frac{\cot ^2(c+d x) \left (\frac{3}{8} a \left (144 a^2 A b-5 A b^3+64 a^3 B-88 a b^2 B\right )-24 a \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \tan (c+d x)-\frac{3}{8} a b \left (48 a^2 A-59 A b^2-104 a b B\right ) \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx}{24 a}\\ &=\frac{\left (144 a^2 A b-5 A b^3+64 a^3 B-88 a b^2 B\right ) \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{64 a d}+\frac{\left (48 a^2 A-59 A b^2-104 a b B\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{96 d}-\frac{a (11 A b+8 a B) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d}+\frac{\int \frac{\cot (c+d x) \left (\frac{3}{16} a \left (128 a^4 A-240 a^2 A b^2-5 A b^4-320 a^3 b B+40 a b^3 B\right )+24 a^2 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \tan (c+d x)+\frac{3}{16} a b \left (144 a^2 A b-5 A b^3+64 a^3 B-88 a b^2 B\right ) \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx}{24 a^2}\\ &=\frac{\left (144 a^2 A b-5 A b^3+64 a^3 B-88 a b^2 B\right ) \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{64 a d}+\frac{\left (48 a^2 A-59 A b^2-104 a b B\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{96 d}-\frac{a (11 A b+8 a B) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d}+\frac{\int \frac{24 a^2 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right )-24 a^2 \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{24 a^2}+\frac{\left (128 a^4 A-240 a^2 A b^2-5 A b^4-320 a^3 b B+40 a b^3 B\right ) \int \frac{\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx}{128 a}\\ &=\frac{\left (144 a^2 A b-5 A b^3+64 a^3 B-88 a b^2 B\right ) \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{64 a d}+\frac{\left (48 a^2 A-59 A b^2-104 a b B\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{96 d}-\frac{a (11 A b+8 a B) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d}+\frac{1}{2} \left ((a-i b)^3 (i A+B)\right ) \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{\left (24 a^2 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right )-24 i a^2 \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )\right ) \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{48 a^2}+\frac{\left (128 a^4 A-240 a^2 A b^2-5 A b^4-320 a^3 b B+40 a b^3 B\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{128 a d}\\ &=\frac{\left (144 a^2 A b-5 A b^3+64 a^3 B-88 a b^2 B\right ) \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{64 a d}+\frac{\left (48 a^2 A-59 A b^2-104 a b B\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{96 d}-\frac{a (11 A b+8 a B) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d}-\frac{\left ((a-i b)^3 (A-i B)\right ) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac{\left ((a+i b)^3 (A+i B)\right ) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}+\frac{\left (128 a^4 A-240 a^2 A b^2-5 A b^4-320 a^3 b B+40 a b^3 B\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{64 a b d}\\ &=-\frac{\left (128 a^4 A-240 a^2 A b^2-5 A b^4-320 a^3 b B+40 a b^3 B\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{64 a^{3/2} d}+\frac{\left (144 a^2 A b-5 A b^3+64 a^3 B-88 a b^2 B\right ) \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{64 a d}+\frac{\left (48 a^2 A-59 A b^2-104 a b B\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{96 d}-\frac{a (11 A b+8 a B) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d}+\frac{\left (i (a+i b)^3 (A+i B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}-\frac{\left ((a-i b)^3 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac{\left (128 a^4 A-240 a^2 A b^2-5 A b^4-320 a^3 b B+40 a b^3 B\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{64 a^{3/2} d}+\frac{(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}+\frac{\left (144 a^2 A b-5 A b^3+64 a^3 B-88 a b^2 B\right ) \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{64 a d}+\frac{\left (48 a^2 A-59 A b^2-104 a b B\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{96 d}-\frac{a (11 A b+8 a B) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{a A \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{4 d}\\ \end{align*}

Mathematica [A]  time = 6.45776, size = 622, normalized size = 1.82 \[ -\frac{2 b B \cot ^4(c+d x) (a+b \tan (c+d x))^{3/2}}{5 d}-\frac{2}{5} \left (\frac{b (2 a B+5 A b) \cot ^4(c+d x) \sqrt{a+b \tan (c+d x)}}{7 d}-\frac{2}{7} \left (-\frac{\left (35 a^2 A-72 a b B-40 A b^2\right ) \cot ^4(c+d x) \sqrt{a+b \tan (c+d x)}}{16 d}-\frac{\frac{7 a \left (40 a^2 B+85 a A b-48 b^2 B\right ) \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)}}{24 d}-\frac{\frac{35 a^2 \left (48 a^2 A-104 a b B-59 A b^2\right ) \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{32 d}-\frac{-\frac{105 a^2 \left (144 a^2 A b+64 a^3 B-88 a b^2 B-5 A b^3\right ) \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{32 d}-\frac{-\frac{105 a^{5/2} \left (-240 a^2 A b^2+128 a^4 A-320 a^3 b B+40 a b^3 B-5 A b^4\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{32 d}+\frac{i \sqrt{a-i b} \left (210 a^4 \left (3 a^2 A b+a^3 B-3 a b^2 B-A b^3\right )+210 i a^4 \left (a^3 A-3 a^2 b B-3 a A b^2+b^3 B\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d (-a+i b)}-\frac{i \sqrt{a+i b} \left (210 a^4 \left (3 a^2 A b+a^3 B-3 a b^2 B-A b^3\right )-210 i a^4 \left (a^3 A-3 a^2 b B-3 a A b^2+b^3 B\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d (-a-i b)}}{a}}{2 a}}{3 a}}{4 a}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^5*(a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

(-2*b*B*Cot[c + d*x]^4*(a + b*Tan[c + d*x])^(3/2))/(5*d) - (2*((b*(5*A*b + 2*a*B)*Cot[c + d*x]^4*Sqrt[a + b*Ta
n[c + d*x]])/(7*d) - (2*(-((35*a^2*A - 40*A*b^2 - 72*a*b*B)*Cot[c + d*x]^4*Sqrt[a + b*Tan[c + d*x]])/(16*d) -
((7*a*(85*a*A*b + 40*a^2*B - 48*b^2*B)*Cot[c + d*x]^3*Sqrt[a + b*Tan[c + d*x]])/(24*d) - ((35*a^2*(48*a^2*A -
59*A*b^2 - 104*a*b*B)*Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]])/(32*d) - (-(((-105*a^(5/2)*(128*a^4*A - 240*a^2
*A*b^2 - 5*A*b^4 - 320*a^3*b*B + 40*a*b^3*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(32*d) + (I*Sqrt[a - I
*b]*(210*a^4*(3*a^2*A*b - A*b^3 + a^3*B - 3*a*b^2*B) + (210*I)*a^4*(a^3*A - 3*a*A*b^2 - 3*a^2*b*B + b^3*B))*Ar
cTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((-a + I*b)*d) - (I*Sqrt[a + I*b]*(210*a^4*(3*a^2*A*b - A*b^3 +
 a^3*B - 3*a*b^2*B) - (210*I)*a^4*(a^3*A - 3*a*A*b^2 - 3*a^2*b*B + b^3*B))*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sq
rt[a + I*b]])/((-a - I*b)*d))/a) - (105*a^2*(144*a^2*A*b - 5*A*b^3 + 64*a^3*B - 88*a*b^2*B)*Cot[c + d*x]*Sqrt[
a + b*Tan[c + d*x]])/(32*d))/(2*a))/(3*a))/(4*a)))/7))/5

________________________________________________________________________________________

Maple [C]  time = 4.294, size = 227162, normalized size = 664.2 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^5*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**5*(a+b*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out